TuliPOD

Exploring Clustered Compound on Moon

Workshop 1

LA&I Graduation Studio | Workshop 1 | Sophia Benfield & Regina Tania Tan | TuliPod

Vertical Strategy

Horizontal Strategy

Voronoi geometry in nature

Finished tulip bulb, with bulblets

Synthesis tulip bulblets concept | Concept diagrams

Synthesis tulip bulblets concept | Concept diagrams

Code-generated Iterations | Strategy

Initial Shape 100 points

Increase Point Cloud 200 points More variative iterations

Decrease Point Cloud
50 points
Better control

Most effective controlling shapes:

Manually moving points

Controlling bottom surface:

Copy main point under volume

Form-finding process | Iterations

Starting shape: vertical cluster

Iteration 1: flat bottom and central atrium

Iteration 2: different levels

Iteration 3: levels spiral upward

Iteration 4: enlarge atrium

Iteration 5: bring together

Iteration 6: change proportions

Iteration 7: 2-sided cluster

Iteration 9: create a more cohesive bulb shape

Choosing Representative Fragment

Choosing Representative Fragment

Choosing Representative Fragment

Stress Diagram

D2RP&A
Building Fragment
Wall Fragment
Fragment Components

Extracted wall fragment

Adjust angle to ensure proper support in turning point

Add wall thickness

Adjusted wall

Choose wall fragment for robotic production

Refine wall fragment shape, ensure the fragment width change is not extreme

Wall fragment after iterations of voronoi structure

Fragment Iteration

Variations of voronoi stretch angle

Conclusion: different based on seed. Should be adjusted for walls with extreme angles. Either top or bottom angle should be kept at 0 for the voronoi geometry to properly merge in the turning point.

Variations of surface normal vector

Conclusion: centrally located normal lines produce more even voronoi geometry on the turning point.

Variations of point count

Conclusion: Point cloud should be adjusted in proportion to the wall fragment size to keep the component at around 200mm vertical thickness.

Increased point count (170)

Increased point count (170)

D2RP&A

Building Fragment
Wall Fragment
Fragment Components

Fragment Iteration

Seed 7

Components too big

Seed 10

Increase control point count

Good proportion for most components
Components in turning point too tapered
may be problematic in milling
Components too vertical

Components too vertical need shorter components for compressive strength

Manually adjust points from the generated seed

Point count 130 Reference top angle 0, bottom angle 90

Goal achieved:

- (1) Laterally stretched and vertically compressed components
- (2) Generally even distribution and shape of voronoi geometry

D2RP&A

Building Fragment
Wall Fragment
Fragment Components

Breakdown fragment into components

Chosen fragment

Representative component in turning point to test stability

Chosen component to develop for production

Chosen component for simulation

on the folding area, considering higher complexity for testing

Fragment of 6 Components

D2RP&A

Building Fragment Wall Fragment Fragment Components

Connection

Milling Holes

D2RP&A
Building Fragment
Wall Fragment
Fragment Components

D2RP&A

Building Fragmen

Fragment Components

LA&I Graduation Studio | Workshop 1 | Sophia Benfield & Regina Tania Tan | TuliPod