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Abstract—This paper proposes a novel framework that com-
bines both planning and learning-based trajectory generation
methods to handle complex robotic assembly tasks. The frame-
work utilizes MoveIt! for planning large-scale reaching motions
and Dynamic Movement Primitives (DMPs) for precise grasping
and placing movements, with both methods integrated into a
single system controlled by a behavior tree. An impedance
controller is employed to ensure smooth and safe execution of
the generated trajectories, particularly in scenarios that involve
human interaction.

The proposed framework is evaluated through a series of
experiments involving the assembly of custom-designed Voronoi-
shaped building blocks. The results show that the combination of
planning for reaching motions and DMPs for detailed movements
provided a flexible solution to the challenges of robotic assembly.

I. INTRODUCTION

Collaborative robots are the result of significant advance-
ments in robotics. Positioned at the forefront of the fourth
industrial revolution [1], these robots enable companies to inte-
grate the strength and precision of robots with the dexterity and
decision-making capabilities of humans [2]. This collaboration
allows robots to handle complex tasks that are challenging to
fully automate and assists humans in performing physically
demanding or tedious repetitive tasks.

A major advantage of collaborative systems is their flexi-
bility; human-robot collaborations are designed to such that
they can share a workspace without the need for rigid safety
systems. This flexibility allows for easier and quicker re-
allocation of robots within production plants. Consequently,
a single robot can perform a variety of tasks [3], making
robotic automation accessible and cost-effective for smaller
companies.

Assembly tasks present one of the more challenging areas to
automate, requiring consideration of both position trajectories
and task dynamics [4]. This complexity makes assembly a
prime candidate for human-robot collaboration [3], [5], re-
sulting in various implemented methods. The main difference
between these methods lies in the trajectory generation.

For example, trajectories can be generated using planning
algorithms, as shown in [6], the authors employ computer
vision to locate a part and plan a trajectory towards it,
positioning the end-effector near the grasping location. Once
positioned the human physically guides the more intricate

1Cognitive Robotics, Faculty of Mechanical Engineering, Delft University
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2Robotic Building, Faculty of Architecture, Delft University of Technology,
The Netherlands.

Fig. 1. Photo of the robot during the execution of the assembly DMP.

grasping action. Similarly, authors of [7] use a tablet to
indicate the location of a part after which the robot plans a
trajectory towards the specified part.

Such planning-based approaches can be effectively achieved
using state-of-the-art open-source robotics manipulation plat-
forms, like MoveIt! [8], which generates high-degree of free-
dom trajectories through cluttered environments while avoid-
ing local minimums.

Another widely used approach in robotic assembly is learn-
ing from demonstration (LfD). In robotics, LfD is a method
where robots learn new skills by imitating the actions of an
expert [9]–[13]. A key advantage of LfD is that it makes robot
programming accessible to nonexperts. Through demonstra-
tions, robots can learn the constraints and requirements of a
task, enabling them to adapt their behavior. This means robots
are not limited to repeating predefined actions in controlled
settings, but can learn to make optimal decisions in more
complex environments. As a result, LfD has the potential to
bring significant benefits to industries like manufacturing [14].

Learning trajectories for tasks such as robotic assembly
is often done via the use of dynamical motion primitives
(DMPs) [13]. DMPs, first stated in [15], represent an elegant
mathematical formulation of the motor primitives as stable



dynamical systems and are well suited to generate motor
commands for artificial systems like robots [4]. This process
usually involves a human that demonstrates a movement, after
which a DMP can be fitted to reproduce the demonstration.

For example, authors of [16] utilize kinesthetic guiding to
demonstrate trajectories for the Cranfield assembly benchmark
[17], after which they encode the position and orientation
trajectories as DMPs. In another example, authors of [18]
recognize that assembly tasks often fail due to unforeseen
situations. In order to resolve this issue they propose a LfD
framework which models exception strategies as DMPs.

Complementary to assembly tasks, disassembly is also
challenging by solely using the demonstrated trajectories [4].
Classical DMPs repel the idea of reversibility because they
have a unique point attractor in the specified goal parameter
of the movement. In order to tackle the disassembly challenge,
authors of [19] propose a method that learns two DMPs from
a single demonstration; one forward and one backward.

Both planning and Learning from Demonstration (LfD)
frameworks have their own advantages. Planning approaches,
which rely on a predefined goal position, are only as effective
as the perception system that provides that goal [13]. The
inherent complexity of assembly tasks makes it challenging to
fully automate these processes using planning methods alone.
Consequently, as shown in the literature, planning frameworks
are often employed to position the end-effector near a target
part, as specifying such a goal location is relatively straight-
forward. Planning methods are preferred where applicable be-
cause they generate optimal trajectories, including the effective
control of the arm’s null-space.

Conversely, LfD methods, particularly DMPs, excel in situ-
ations requiring small, precise movements that are difficult
to define through coding. Their strength lies in the ability
to replicate demonstrated movements, eliminating the need
for sophisticated perception systems or complex program-
ming. Because demonstrations typically involve recording end-
effector data, they have proven to be particularly well suited
for overactuated systems, such as redundant manipulators, for
which kinematic feasibility is relatively easier to achieve [13].
It is worth noting that there are also approaches that do teach
null-space motion [20], however, these approaches require
additional steps beyond the classical DMP framework.

So far we have only discussed trajectory generation methods
used in assembly tasks. However, the execution method of
such trajectories is just as important to consider. Classically
trajectories were executed using (possibly dangerous) position-
controlled rigid robots [21]. However, in the context of human-
robot interaction such methods are inadequate because the
unavoidable modeling errors and uncertainties may cause a
rise of the contact force, ultimately leading to an unstable
behavior during the interaction, especially in the presence of
rigid environments [22].

In the context of safe human-robot interaction, impedance
and the related admittance control, defined by [23], form a
paradigm to treat robotic systems from an energetic point
of view such that motion and force can be controlled in a
unified manner [21]. The impedance has flow (i.e., motion)
input and effort (i.e., force) output, while admittance is the

opposite, having effort input and flow output. This means that
in a physical interaction, one must physically complement the
other. It means if one system is regarded as admittance, the
other must be treated as impedance and vice versa [24].

Especially impedance control turned out to be a good choice
for manipulation tasks. The reason being that the fact that
the environment can always accept force input, but sometimes
cannot be moved, admittance is a proper role for environment.
Based on the complementary theory, the manipulator should
be regarded as impedance, allowing it to safely interact with
it’s environment (i.e. human worker).

To summarize, it can thus be concluded that planning-
based approaches generally excel in scenarios requiring sim-
pler movements, whereas learning-based approaches are more
effective for complex movements. Given that assembly tasks
often require both types of movements, it is logical to consider
integrating both planning and learning into a single framework.
However, based on the extensive DMP survey [4], such a
combination has not yet been implemented.

This paper proposes a novel assembly framework that
incorporates both planning and learning trajectory generation
methods in combination with an impedance controller. The hy-
pothesis is that combining trajectory planning for large reach-
ing movements with trajectory learning for precise, small-
scale movements will result in a effective assembly framework.
This proposed framework will be tested within the context of
the Rhizome project, [25], which aims to provide a proof of
concept for assembling habitats in empty lava tubes on Mars
using Voronoi-shaped building blocks.

This paper will continue by describing the methods used in
the proposed framework. After which, the experiments con-
ducted to test the framework are described in the experiments
section. Finally, the results are analyzed and discussed in the
discussion section.

II. METHODS

The aim of this paper is to combine both planning and
learning trajectory generation methods into one assembly
framework. Figure 2 provides a system overview with the main
software blocks, signals and apparatus. Assembly tasks can
usually be broken down into two types of movements: the first
is moving the parts between grasping and assembly locations
and the second is the more precise grasping and placing of the
parts itself. As described in section I, a planning approach is
a suitable option for the first type of movement and a learning
approach suits the second type of movement. For the second,
more precise sub-task, a learning approach based on Dynamic
Movement Primitives (DMPs) is proposed. Both methods are
implemented as ROS packages which allows for a smooth
integration into a single framework.

To manage the assembly task at a high level a behavior tree
is utilized. Behavior trees provide a method for describing
a policy for an agent such as a robot. In this context, the
behavior tree mainly coordinates when to use MoveIt! for the
larger movements and when to switch to DMPs for the finer
grasping and placing tasks. This ensures that the appropriate
method is used at the right time during the assembly process.
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For a more detailed explanation of behavior trees and their
theoretical foundations, refer to Appendix ??.

Trajectory execution will be handled by an impedance
controller. As described in section I, such a controller ensures
smooth execution of trajectories and enhances safety during
human-robot interactions, which is crucial for assembly tasks
involving precise movements and contact with objects.

The method for physically manipulating the building blocks
required the design of a custom gripper. As this design falls
outside the primary scope of this paper, it will not be detailed
here. For a more comprehensive description of the gripper,
please refer to Appendix ??.

A. State Management using Behavior Trees

As mentioned, the behavior tree is used to control the task
at a high level. The behavior tree implementation used in this
work is based on the BehaviorTree.CPP library1. This library
is well-maintained, thoroughly documented, written in C++,
and supports ROS integration, making it an ideal choice for
this work.

Figure 3 illustrates the behavior tree utilized in this work.
The tree operates by assigning robot functionalities to various
nodes, within the framework provided by the selected library.
For details regarding the implementation, please refer to the
iiwa bt package in the associated Git repository2. For a more
in-depth, theoretical discussion of behavior trees, refer to
Appendix ??.

B. Trajectory Planning using MoveIt!

MoveIt! will be used for the planning part of the framework.
MoveIt! is an good fit for this framework due to its advanced
motion planning capabilities and ease of implementation. As
one of the most widely used and powerful planning tools in

1https://github.com/BehaviorTree/BehaviorTree.CPP
2https://github.com/TomLim210/thesis
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Fig. 3. Visual representation of the behavior tree used to describe the assembly
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the robotics community, MoveIt! allows for the generation of
highly efficient trajectories, making it well-suited for tasks
involving large, reaching motions. Given that MoveIt! is
integrated with the Robot Operating System (ROS), makes
for a relatively easy development process.

Another benefit of using MoveIt! is that is allows users to
write their own custom controllers for it using the ROS control
framework. As mentioned, the impedance controller used in
this work, also has a ROS control integration on top of it. This
allows us to launch MoveIt! using the specified impedance
controller. The benefit of this setup is that after configuration,
MoveIt! will execute any given commands with the provided
impedance controller.

Given that MoveIt! is so widely used, many robotics ma-
nipulators already have existing MoveIt! configurations as part
of their public repository. The KUKA iiwa is no exception
and it also comes with out of the box MoveIt! functionality.
However, the default setup can not be used for much more
than manually showcasing it’s capabilities. In order to use
it in the proposed framework, some custom code had to
be written using the MoveIt! API (Application programming
interface) which allows users to access MoveIt! functionalities
via Python or C++ code.

Going back to the proposed framework, MoveIt! will be
responsible to generate trajectories between known configura-
tions. The first objective is thus to create a method for storing
those configurations. The second objective is to provide the
user with an interface that allows them to command the robot
to move into these configurations. These functionalities are
located in the iiwa planning package in the associated Git
repository2

The script StoreConfig.py runs as a ROS node and allows
the user to store different robot configurations as a yaml file.
After moving the robot into a desired configuration, the user
enters a name for that configuration and the node checks if
there already exists a configuration with that name and if so,
overwrites it and if not adds a new configuration to the list.

The same package also provides a ROS node,
iiwa planning node, that provides the user with an interface
to select a configuration. After the user has entered a valid
configuration name, the node uses the MoveIt! API to
command the robot accordingly.



C. Dynamical Movement Primitives

As outlined in the literature, Dynamical Movement Prim-
itives (DMPs) are one of the most commonly used methods
for learning trajectories [13]. They are especially effective for
tasks that are difficult to program manually or require frequent
adaptation, making them an ideal solution for handling the in-
tricate grasping and placing movements involved in assembly
tasks.

The basic concept behind dynamical movement primitives
(DMPs) is to model movement as a combination of dynam-
ical systems. The state variables of these systems represent
trajectories for controlling elements such as the 7 joints of a
robot arm or the position and orientation of its end-effector.
The goal of the movement is captured by an attractor state,
which is the endpoint of the trajectory.

One of the main benefits of DMPs is that they retain
the desirable features of linear dynamical systems, such as
guaranteed convergence to the goal, robustness against dis-
turbances, and independence from time. At the same time,
DMPs can represent more complex and smooth movements
by introducing a non-linear forcing term. This forcing term
is typically learned from demonstrations and can be further
refined using reinforcement learning.

The DMPs notation follows that of a spring-damper model,
as shown in [26] they can be described as:

τ ÿ = α(β(g − y)− ẏ) + f, (1)

which has first-order notation:

τ ż = αz(βz(g − y)− z) + f, (2)
τ ẏ = z, (3)

where τ is a time constant and αz and βz are positive con-
stants. If the forcing term f = 0, these equations represent a
globally stable second-order linear system with (z, y) = (0, g)
as a unique point attractor. With appropriate values of αz

and βz , the system can be made critically damped (with
βz = αz/4) in order for y to monotonically converge toward
g [26].

Since the whole idea of learning a demonstrated trajectory,
the forcing term will not be zero. This makes that it is no
longer guaranteed that the system will converge towards the
goal state g. In order to solve this, a gating term is added
to the forcing function, which is 1 at the beginning of the
movement and 0 at the end. Authors of [27] suggest to use an
exponential system to formulate the gating system.

While solving the converging issue, adding the gating term
makes the forcing function depended on time. When the
system depends on time, the movement is tied to a fixed
timeline, making it less adaptable to variations. For example,
if the movement needs to be executed faster or slower, a
time-dependent system would require significant adjustments
to maintain the quality of the motion.

By making the system autonomous, the movement’s pro-
gression is determined by the internal state of a dynamical
system, often referred to as the phase variable. This phase
variable governs the progression of the movement from start

to finish, regardless of how fast or slow the movement needs
to be. Authors of [27] suggested to use the same dynamical
system for the gating and phase. Thus the phase of the
movement starts at 1, and converges to 0 towards the end
of the movement, just like the gating system. This allows
the same motion to be scaled in time without altering the
underlying dynamics, making the system more adaptable to
different conditions.

1) ROS Implementation: Given the DMPs popularity, there
are many public repositories that implement them. However, to
the best of our knowledge, there is not one that has integrated
DMPs with ROS. In order to solve this, another ROS package
is created that is basically a ROS wrapper around the DMP
repository described in [28].

This repository implements DMPs as described in section
II-C based on the work [26]. Besides providing a method for
implementing DMPs, the authors also provide a framework to
optimize the DMP for a given task. Their workflow, which is
adopted in this work is as follows:

1) Train the DMP with a demonstration.
2) Define the task and implement executing DMPs on the

robot.
3) Tune the exploration noise for the optimization.
4) Prepare the optimization.
5) Run the optimization update-per-update.

a) Executing the DMPs.
b) Update the distribution.
c) Plotting intermediate results.

Important to note is that the first step consist of learning the
forcing function. The optimization itself refers to further fine
tuning the weights of the DMP based on a secondary defined
task. During the execution of a given DMP, a cost variables
file is created which is used to asses the performance of that
iteration. The reason for this extra optimization is that an initial
human demonstration might not be the optimal solution, in fact
it most likely is not. Instead the demonstration provides the
robot with a solid starting point which immediately points the
robot towards the optimal solution, thus saving a lot of time.

Integrating this into ROS meant creating a method for
recording and saving trajectories and a method for executing
DMP iterations. The rest of the process can be done offline
and thus does not need require changing. As for recording the
demonstrated trajectories it is important to consider what data
to record. For a robotic manipulator this usually comes down
to either recording the end-effector states or the joint states.

In our case, the demonstrations are done via kinesthetic
guiding of the end-effector. During such demonstrations the
individual joints simply follow the end-effector, in other words
they are not actively controlled. Therefore a recording in joint
space might cause the resulting DMP to try to reproduce cer-
tain joint configurations that are not intended at all. It is more
logical to record in the end-effector space. Another reason
for recording end-effector data is that the used impedance
controller provides functionality to control the end-effector
state, making it more straightforward to execute DMPs that
generate trajectories in this same end-effector space.

For the execution of the DMPs, a straightforward ROS node
is implemented. This node integrates a given DMP within a



feedback loop, using robot state information to generate the
desired state, which is then directly published to the ROS-
integrated impedance controller.

D. Impedance Control

As mentioned, an impedance controller is essential for
ensuring safe human-robot interaction. This control mecha-
nism works by simulating a virtual spring between the end-
effector and the reference position, effectively creating a
spring-damper-mass system. The behavior of this system can
be described by the following equation:

Fext = K(xr − x)−Dẋ, (4)

where Fext represents the force applied to move the end-
effector towards the reference position, K is the spring
stiffness, xr and x are the reference and actual positions,
respectively, and D is the damping term that stabilizes the
system.

The impedance controller used in this paper is described in
[29]. From their Git repository: ”The controller is developed
using the seven degree-of-freedom (DoF) robot arm LBR iiwa
by KUKA AG and has also been tested with the Franka
Emika Robot (Panda) both in reality and simulation. This
controller is used and tested with ROS 1 melodic and noetic.
The implementation consists of a base library that has few
dependencies and can e.g. be directly integrated into software
such as the DART simulator and a ROS control integration on
top of it.”

These properties in combination with clear documentation
make it relatively straightforward to use the same setup for
executing both MoveIt! as well as DMP generated trajectories.

III. EXPERIMENTS & ANALYSIS

This section describes the experiments conducted to evalu-
ate the proposed framework. Initially, each individual method
that forms part of the framework is tested separately, followed
by an evaluation of the complete framework. All experiments
are carried out using both the KUKA iiwa 7 and 14 robots,
equipped with a custom 3D-printed gripper.

The purpose of each experiment is to clearly define the
objective and hypothesis, include relevant performance metrics
aligned with the aim, provide a detailed step-by-step experi-
ment protocol, and present the anticipated results, including
plots and analysis that will appear in the paper.

A. Planning-Based Trajectory Generation

This experiment aims to assess the accuracy and repeatabil-
ity of the planning framework (using MoveIt!) in generating
and executing large reaching motions. The hypothesis is that
the planning framework can reliably reproduce stored config-
urations with minimal error, and the trajectories generated for
the large motions will be optimal in terms of joint movement
and end-effector accuracy.

To assess the performance of the planning framework, sev-
eral metrics will be used. The primary metric is joint position
error, which will compare the stored joint configurations to the

actual joint configurations reached after executing the planned
motion. Trajectory smoothness will also be evaluated by
analyzing joint values over time, looking for any irregularities
or deviations in the movement. These metrics are used in
determining how well the planning algorithm manages large
motions and ensures repeatability with minimal error.

The experiment will follow a structured protocol. First,
the robot will be set in gravity compensation mode. Then
the robot will be manually moved into a set of predefined
configurations and these configurations will be stored using
the iiwa planning package. After restarting the robot, MoveIt!
will be used to command the robot to move into the stored
configurations. This process will be repeated multiple times for
each configuration to evaluate consistency and repeatability.

In terms of expected results, the joint values for both the
stored and reproduced configurations should show similar end
values, though the exact trajectories may differ. A plot of joint
position error over time is expected to reveal minimal differ-
ences between the stored and actual configurations. Smooth,
consistent trajectories are anticipated, and deviations could
suggest issues in the planning process or with the robot’s
controller.

B. DMP-Based Trajectory Generation and Optimization

The purpose of this experiment is to evaluate the effective-
ness of Dynamic Movement Primitives (DMPs) in generating
and optimizing complex movements. Additionally, the experi-
ment will assess the DMP’s ability to generalize across similar
tasks and improve performance through iterative optimization.
The hypothesis is that an optimized DMP will accurately
reproduce the demonstrated motion with minimal trajectory
error and will show improvement over successive iterations of
optimization.

To assess the performance, several metrics will be used. The
trajectory reproduction error will measure the difference be-
tween the demonstrated and reproduced trajectories, providing
an indication of accuracy. Optimization performance will track
cost reductions over iterations, demonstrating how effectively
the optimization improves the DMP. Disturbance robustness
will evaluate the DMP’s ability to reach the goal state even
when disturbances are introduced during execution. Finally,
smoothness and adaptability will assess how smooth the final
trajectory is and how well it adapts to slight variations in
the task. These metrics will offer a comprehensive evaluation
of the DMP’s ability to handle fine manipulation tasks and
demonstrate the benefits of optimization.

The experiment will follow a structured protocol. First, the
robot will be placed in gravity compensation mode, and com-
plex grasping and placing movements will be demonstrated
via kinesthetic guiding and recorded using the iiwa dmp
package. The DMP will be trained on this trajectory, with
the number of basis functions adjusted to balance accuracy
and computational efficiency. The trained DMP will then be
stored as the initial model.

Next, the task will be defined, including a cost function
that minimizes trajectory error and joint accelerations. The
initial DMP will be executed, and the performance will be



evaluated using the predefined cost function. Afterward, ex-
ploration noise will be tuned to ensure that the optimization is
neither too conservative nor overly aggressive. Different noise
values will be tested by running multiple rollouts, and the
performance of each will be analyzed.

The optimization process will then proceed, iterating
through DMP rollouts. After each rollout, the DMP parameters
will be updated using the collected cost data. Intermediate
results will be plotted to monitor optimization progress, and
adjustments to the exploration noise will be made if necessary.

In terms of expected results, several outcomes are antic-
ipated. A plot of the mean trajectory error over successive
optimization iterations should show a clear decrease, indi-
cating improved accuracy in reproducing the demonstrated
movement. Cost reduction over time should also be evident,
illustrating the effectiveness of the optimization process in
minimizing task-related costs. A comparison of the initial and
optimized DMP trajectories should reveal that the optimized
trajectory is smoother and more closely aligned with the
demonstration. Additionally, a comparison between undis-
turbed execution and execution with applied disturbances
(such variations in starting position) should highlight the
DMP’s robustness.

C. Framework Demonstration in Rhizome Project

The purpose of this experiment is to demonstrate the in-
tegrated functionality of both the planning and DMP-based
trajectory generation frameworks in the context of an assembly
task. The hypothesis is that combining planning for large-scale
motions with DMP for fine, precise manipulation will result
in a flexible and effective framework that can handle complex
assembly tasks. As this is a proof-of-concept demonstration,
the primary focus is on showcasing the system’s capabilities
rather than conducting detailed performance comparisons.

Two key functionalities will be demonstrated. First, the hy-
brid trajectory generation will show how planning is used for
large-reaching motions, while the DMP framework is applied
to handle the precise grasping and placing movements. Second,
the completion of the assembly task will validate the system’s
ability to execute both types of movements seamlessly in a
single workflow.

To quantify the success of the demonstration, repeatability
will assess the system’s consistency by running the experiment
multiple times and analyzing variations in the results across
trials. These metrics are important for evaluating how well
the combined framework performs in real-world scenarios,
ensuring both effectiveness and reliability.

The experiment protocol involves equipping the KUKA
iiwa arm with the custom designed gripper and storing the
required configurations for the assembly task using the plan-
ning framework. A demonstration of the grasping and placing
tasks will then be recorded using the DMP framework. Once
both configurations are set, the behavior tree will execute
the task in several stages: it will first use planning to move
into the grasping position, then use the DMP to perform the
actual grasp. Afterward, the robot will move the block to the
assembly position using planning, and finally, the DMP will

control the precise placement of the block. This sequence will
be repeated multiple times to evaluate repeatability.

Expected results include visual documentation of the robot’s
grasping, placing, and assembly steps. Overall, the experi-
ment should demonstrate that the proposed framework en-
ables smooth transitions between planning and DMP-based
movements, completing the assembly task effectively and with
minimal error.

D. Analysis

This section presents the experiments conducted and their
corresponding results. The first set of tests focused on the
planning framework, where the robot successfully moved into
predefined configurations with relatively small errors. It was
also observed that the reproduced trajectories were notably
smoother, with lower maximum velocities compared to the
original trajectories recorded during configuration storage.

In the experiments involving Dynamic Movement Primitives
(DMPs), the system demonstrated the ability to reproduce
complex grasping and placing tasks with minimal errors.
Interestingly, the optimized DMP did not show a significant
improvement over the initial DMP. In terms of robustness, the
DMPs reliably reached the target position, regardless of the
starting point.

The final experiment tested the entire framework using
a behavior tree to perform a complete assembly task. This
included equipping the robot with a custom gripper. Both the
planning and DMP frameworks functioned well within the
behavior tree, and it was observed that each sub-framework
successfully executed its task whether or not the robot was
holding the block. However, this performance could also
reflect the capabilities of the impedance controller used in the
system.

1) Planning-Based Experiment: The first step in this ex-
periment involved storing several predefined configurations.
To demonstrate the capabilities of the planning framework,
these guided trajectories were recorded and later compared to
the reproduced trajectories. Figure 4 shows the joint positions
over time on the left, and shows the velocities of joint 2 and
joint 5 on the right, only two joints are displayed for clarity,
as plotting all seven joints resulted in overfull graphs. The
goal of these figures is to highlight the differences between
the guided and reproduced trajectories, rather than detailing
the velocity of each joint.

One key observation from these figures is that the guided
trajectories (solid lines) contain unnecessary oscillations and
are less smooth compared to the reproduced trajectories
(dashed lines). Despite the inconsistencies in the guided
demonstrations, the planning framework reliably moved the
robot into the predefined configurations with relatively small
errors. For example, the mean position error for the trajectory
in figure 4 is 0.140461, rad. This is because the planning
framework focuses only on reaching the final configuration
and uses advanced algorithms to generate smooth and efficient
paths to achieve it. As a result, the starting configuration of
the robot has no impact on the planning process.
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2) DMP-Based Experiment: Before analyzing the perfor-
mance of the DMPs, it was necessary to make some decisions
about its configuration. The first decision involved selecting
the number of basis functions to use for generating the
forcing function. To explore this, 13 DMPs were created
from the initial demonstration, varying the number of basis
functions from 3 to 15. Figure 5 shows a comparison between
a DMP trained with three basis functions and the original
demonstration. While the DMP reaches the same end goal, it
does not accurately follow the demonstrated trajectory. Given
that the purpose of using DMPs for grasping and assembly is to
enable precise replication of complex movements, accurately
following the demonstration is crucial.

On the other end of the spectrum, figure 5 shows a DMP
trained with 15 basis functions compared to the demonstration.
As the number of basis functions increases, the DMP’s ability
to follow the demonstrated trajectory improves significantly.
This is further confirmed in figure 6, which plots the mean
error against the number of basis functions.

Choosing the appropriate number of basis functions is
important. While a higher number of basis functions requires
more computational resources, the increase in accuracy out-
weighs this cost. Since the DMP execution is implemented
in C++ code, the additional computational load is negligible.
Based on these findings, using 13 to 15 basis functions was
found to provide sufficient accuracy for both the grasping and
assembly DMPs.

The next step in the experiment was to optimize the chosen
initial DMP based on a defined task. The idea behind this
is that a human demonstration might not be optimal for a
given start but can be used as a very good starting point.
For example, authors of the used DMP library [28], use this
to optimize the DMP for throwing a ball towards a certain
location. During the execution of the DMP the position of the
ball is recorded and saved as a cost variable which can then
be used to asses the performance of a given DMP.

This work differs in that case because while the human
input does contain unwanted jerky movements, in general it is
considered as the actual desired trajectory and the robot should
not deviate too much from it. Therefore the optimization
process in this work only minimizes acceleration during the
execution.

During the stochastic optimization process, the parameters
of the DMP are sampled from a Gaussian distribution. The
mean of this distribution corresponds to the parameters ob-
tained from training the DMP on the initial demonstration.

The covariance matrix of the sampling distribution controls
the exploration magnitude, which is defined by sigma. The
diagonal of the covariance matrix is initialized with sigma2. If
sigma is set too low, the exploration will be limited, potentially
less than the inherent variability in the robot’s movements,
making learning ineffective. Conversely, if sigma is set too
high, it could lead to unsafe behavior, such as the robot
exceeding acceleration or joint limits, or colliding with its
surroundings. Figure 7 illustrates the results of exploration
using sigma values of 1.0 and 20.0.

In this experiment, it is important that the DMP does not de-
viate significantly from the demonstrated trajectory. As shown
in figure 7, a sigma value of 20.0 leads to the exploration of
highly different trajectories. While this is expected in general
optimization, for the purposes of this work, we aim to maintain
close adherence to the initial demonstration with only limited
exploration. Therefore, a sigma value of 1.0 was chosen.

In the final step of the DMP experiment, the optimization
process aimed to minimize joint accelerations. Interestingly, as
shown in figure 8, the optimized DMP closely resembled the
initial DMP obtained from training. This could be due to the
relatively low sigma value used during the optimization, which
restricted the exploration of alternative trajectories. Another
possible reason is that the optimization was focused solely on
minimizing accelerations, without incorporating a secondary
task beyond simply reaching the goal configuration. As a
result, the DMP did not significantly deviate from the initial
demonstration.

An unexpected result during the experiments was the suc-
cessful use of both the KUKA iiwa 14 and KUKA iiwa 7
robots. Although the two robots are quite similar, they are
not identical in terms of joint configurations and capabilities.
Nevertheless, both robots were able to execute the DMPs and
reach the same goal configurations. This outcome can likely
be attributed to the fact that the DMPs were recorded and
executed in the end-effector space, rather than the joint space.
As a result, the DMPs remain independent of the specific joint
configuration of the robot, allowing any robotic manipulator
that can be configured to use the same impedance controller to
successfully execute the DMPs. This highlights the potential
for broader application of the DMP framework across different
robotic platforms.

3) Framework Demonstration: The last experiment in-
volved testing the complete framework in the context of the
rhizome project, more specifically the assembly of the Vonroi-
shaped building blocks. The first steps involved configuring
both the planning and learning frameworks similar to the previ-
ously described experiments. After configuration the behavior
tree is used to execute the complete assembly task. It must be
noted that due to the current limitations of the used gripper,
a human operator was needed to actuate the gripper during
grasping and placing.

Figure 9 shows the process of first grasping the block on
the left side of the robot, after which the robot moves into
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Fig. 5. DMPs trained with 3 (top) and 15 (bottom) basis functions compared to the demonstrated trajectory.
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Fig. 7. Plotted exploration rollouts with sigma 1.0 on the left and 20.0 on
the right.
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the assembly configuration, at which point the assembly DMP
is executed to perform the final step of the process. Figure 9
shows the 3D end-effector position during this same execution.
The reason this plot starts at a high z-value is because the
behavior tree was started with the robot in an upright position.
This demonstrates that the proposed framework is able to
perform the assembly no matter the starting configuration.

The primary goal of this experiment was to evaluate whether
the planning and learning framework could be seamlessly
integrated to handle a complete assembly task. One of the main
concerns was whether the different methods (MoveIt! and
DMPs) could be executed in succession without encountering
any errors. It was crucial that both approaches were compatible
with the same impedance controller to ensure smooth transi-
tions between tasks.



Fig. 9. Figures showing the different stages of the assembly task. Grasping is done on the left and assembly is done on the right.
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Another potential challenge was the robustness of the frame-
work, particularly in handling varying starting positions. Small
errors in earlier movements could accumulate and affect the
overall accuracy of the assembly. Therefore, the framework
needed to be capable of adapting to slight deviations without
compromising the final result.

The use of the impedance controller proved to be essential,
as the custom gripper required manual actuation. This con-
troller enabled the operator to safely interact with the robot,
allowing for minor adjustments in the robot’s position when
necessary to successfully operate the gripper.

The experiment went smoothly, and it was encouraging
to observe that none of these concerns posed any issues.
Both the planning and learning methods were successfully
executed in sequence, using the same impedance controller
without any conflicts. Additionally, the system proved to
be robust, handling variations in starting positions without
any noticeable degradation in performance. As a result, the
complete framework was able to carry out the entire assembly
task successfully, confirming its effectiveness in this complex
scenario.

For a video of the complete assembly please refer to
(TODO: add youtube link.)

IV. DISCUSSION

The experiments demonstrated that the proposed framework,
combining planning and learning-based trajectory generation,
was capable of successfully performing a complex assembly
task. A key factor in the framework’s success was the use

of the impedance controller, which enabled smooth trajectory
execution and safe human-robot interaction. This flexibility
allowed for manual adjustments, especially important with the
custom gripper, which required manual actuation during the
assembly process. The ability to interact safely with the robot
while maintaining precise control of the task proved to be an
essential aspect of this framework, particularly in the context
of human-robot collaboration.

One of the key challenges discussed in robotic assembly
is the need to address both large-scale movements and fine,
precise motions. The integration of planning for larger reach-
ing motions and learning-based methods for more intricate
tasks provided a flexible solution. The planning framework
handled the large motions well, producing smooth and re-
peatable trajectories. However, the current setup relies on a
known and static goal position, which limits its versatility. By
integrating a perception system, such as vision-based sensing,
the framework could become more adaptive, reducing the
need for manual configuration and enabling more dynamic
responses to changing environments.

The learning-based component of the framework, specif-
ically Dynamical Movement Primitives (DMPs), performed
effectively in replicating precise grasping and placing move-
ments. This approach demonstrated the ability of learning-
based systems to adapt to complex tasks without the need
for extensive programming. However, optimizing the DMPs
to minimize acceleration did not result in significant change
beyond the initial demonstration, suggesting that optimization
might not be necessary for movements in which the main goal
is simply achieving the goal configuration. While the learning
approach worked well for detailed motions, future work could
explore whether incorporating additional optimization param-
eters would result in further improvements.

Another challenge encountered was the performance of the
custom gripper. While it functioned adequately during the
experiments, there were moments when the blocks shifted
during transportation, which affected the accuracy of the
assembly. This suggests that task-specific hardware, such as
grippers, plays a critical role in the overall performance of
robotic assembly tasks. Improving the design of the gripper
or incorporating additional control measures could enhance
reliability in future applications.

A broader question remains about whether integrating plan-
ning and learning into one framework provides a substantial
advantage over using one method alone. While the combined



framework offered flexibility by allowing the robot to handle
both large and small-scale motions, it remains to be seen
whether the added complexity of using both approaches is
always necessary. Further investigation is needed to explore
the potential trade-offs and benefits of this hybrid approach in
different contexts.

Looking forward, a key improvement to consider is imple-
menting the framework on a mobile manipulator. In scenarios
where objects need to be transported between locations, such
as in the Rhizome project, mobility is essential for the system
to function autonomously. A mobile platform would enable the
robot to navigate its environment and perform tasks without
human intervention, making the framework more applicable
to real-world scenarios where flexibility and movement are
required. This addition would significantly enhance the capa-
bilities of the system and broaden its applicability in dynamic
environments.

V. CONCLUSION

This paper presented a novel assembly framework that inte-
grates both planning and learning-based trajectory generation
methods to handle complex tasks. The planning approach, uti-
lizing MoveIt!, was employed for large-scale movements be-
tween predefined locations, while Dynamic Movement Primi-
tives (DMPs) were applied to manage fine, precise movements
such as grasping and placing. The entire system was controlled
by a behavior tree and executed using an impedance controller
to ensure smooth and safe robot operation, particularly during
manual interventions.

Through a series of experiments, the framework was eval-
uated in terms of its ability to perform an assembly task
involving the manipulation of custom Voronoi-shaped building
blocks. The results demonstrated that both the planning and
learning methods functioned effectively in their respective
roles, with the impedance controller proving essential in ensur-
ing safe operation and adaptability. The combination of plan-
ning for large movements and learning for fine manipulation
allowed the system to handle the full assembly process without
errors, confirming the validity of the proposed approach.

In answering the research question, this work demonstrates
that the integration of planning and learning into a single
framework offers a flexible and efficient method for handling
complex assembly tasks. The hybrid approach, while poten-
tially more complex than using either planning or learning
alone, provided notable advantages in terms of adaptability
to different sub-tasks. However, further exploration could be
conducted to determine the specific contexts in which this
combination significantly outperforms single-method systems.

Future work could improve the framework’s versatility
by incorporating a perception system to dynamically detect
goal positions, thus reducing the need for manual configura-
tion. Additionally, implementing the framework on a mobile
manipulator would enhance its applicability, particularly in
scenarios such as the Rhizome project, where parts must
be moved between different locations. Overall, the proposed
framework has shown promise as an efficient and adaptable
solution for robotic assembly tasks in both static and dynamic
environments.
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A
Appendix - Behavior Trees

This information is based on the work [1], which is an extensive survey of behavior trees in robotics.

A BT is a directed tree where we apply the standard meanings of root, child, parent, and leaf nodes.
The leaf nodes are called execution nodes and the non-leaf nodes are called control flow nodes. Figure
A.1 shows the different types of nodes and their logic.

The execution of a BT starts from the root node, that generates signals called Ticks with a given fre-
quency. These signals enable the execution of a node and are then propagated to one or several of
the children of the ticked node. A node is executed if, and only if, it receives Ticks. The child immedi-
ately returns Running to the parent, if its execution is under way, Success if it has achieved its goal, or
Failure otherwise.

Sequences are used when some actions, or condition checks, are meant to be carried out in sequence,
and when the success of one action is needed for the execution of the next. The Sequence node routes
the ticks to its children from the left until it finds a child that returns either Failure or Running, then it
returns Failure or Running accordingly to its own parent. It returns Success if and only if all its children
return Success.

Fallbacks are used when a set of actions represent alternative ways of achieving a similar goal. Thus,
the Fallback node routes the ticks to its children from the left until it finds a child that returns either
Success or Running, then it returns Success or Running accordingly to its own parent. It returns Failure
if and only if all its children return Failure.

Parallel nodes tick all the children simultaneously. Then, if out of the children return Success, then
so does the parallel node. If more than return Failure, thus rendering success impossible, it returns
Failure. If none of the conditions above are met, it returns running.

Action nodes typically execute a command when receiving ticks, such as e.g. moving the agent. If
the action is successfully completed, it returns Success, and if the action has failed, it returns Failure.
While the action is ongoing it returns Running.

Condition nodes check a proposition upon receiving ticks. It returns Success or Failure depending on
if the proposition holds or not. Note that a Condition node never returns a status of Running. Conditions
are thus technically a subset of the Actions, but are given a separate category and graphical symbol to
improve readability of the BT and emphasize the fact that they never return running and do not change
the world or any internal states/variables of the BT.
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Figure A.1: The five node types of a BT [1].



B
Appendix - Custom Gripper

To accommodate the unique shape of the building blocks used for demonstrating the assembly capa-
bilities of the framework, a custom gripper was designed. Since the focus of this work lies more in the
development of the robotics framework rather than the gripper design, a fixed amount of time was allo-
cated for its development. Although the gripper could benefit from further improvements, it functioned
adequately for the purposes of the current experiments.

The gripper consists of a main body and three separate fingers. The main body is designed to be
mounted onto the end plate of the KUKA iiwa robots. Two static fingers are press-fitted into the main
body, while the third finger is movable, sliding within a dovetail channel. Due to the time constraints,
the gripper was manually actuated.

Figure B.1 provides a close-up view of the designed gripper on the left. The holes in the body allow
access to the mounting screws. The movable finger is attached to the static fingers using elastic bands
to apply sufficient pressure when holding the building blocks. A foam layer is added to the fingers to
increase the contact area, ensuring a more secure grip.

On the right, the figure shows the gripper holding a Voronoi-shaped block in a horizontal position. This
position was the most stable, although the gripper was also able to hold the blocks vertically, occasional
slipping occurred in this position.

Figure B.1: Closeups of the gripper.
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